Ir al contenido principal

Lógica proposicional: Leyes de inferencia...

En la entrada anterior hablamos sobre cómo saber si un razonamiento es o no válido a través de demostraciones. El método que vimos, estaba basado en comparar la tabla de verdad de las premisas con la conclusión; de manera que si la conclusión era verdadera en todos los casos en que todas las premisas lo fueran; entonces estábamos frente a un razonamiento válido.

A veces, utilizar tablas de verdad para demostrar esto se transforma en una tarea compleja, por ello es que en esos casos utilizamos directamente leyes de inferencia probadas para hacer las derivaciones.

Nosotros, vamos a utilizar argumentos lógicos admisibles que colocaremos en una tabla a la que se pueden añadir otras expresiones si éstas se obtienen de otras previas usando leyes de inferencia.

Las leyes de inferencia que usaremos son las siguientes:


  • Ley de combinación:  p, q    p^q
  • Ley de simplificación:  p^q    p (o también es válido: p^q -> q)
  • Ley de adición:  p   pvq (o también:  q-> qvp )
  • Modus Ponens: p, p->q   q
  • Modus Tollens: p->q, ¬q   ¬p
  • Silogismo hipotético: p->q, q->r   p->r
  • Silogismo disyuntivo:  pvq, ¬q   p (o también:   pvq, ¬p   q )
  • Ley de casos: p->q, ¬p->q   q
  • Eliminación de la equivalencia: p<->q    p->q, q->p
  • Introducción a la equivalencia: p->q, q->p   p<->q
  • Ley de inconsistencia: p, ¬p   q
EJEMPLO:

Demostrar: p->q, q->¬r, ¬p-> ¬r ⇒ ¬r

Para hacerlo, colocamos las hipótesis (o premisas) una debajo de la otra y, a partir de ellas y las leyes de inferencia enunciadas, tratamos de llegar hacia la tesis (o conclusión) que especifica el problema.




















Comentarios

Entradas populares de este blog

C: Conversiones de tipo (casting) en C...

El casting o simplemente cast  nos permite hacer una conversión explícita de un tipo de dato a otro, a criterio del programador siempre y cuando estos tipos sean compatibles. Este cast se realiza a través de un operador de conversión de tipos (type casting operator) y es un recurso a tener en cuenta ya que hay situaciones en que nos puede resultar de gran utilidad. Hacer uso de un cast es tan sencillo como poner (tipo de dato)  delante de la expresión o variable a convertir. Veamos un ejemplo: Declaramos una variable de tipo int con un identificador tan creativo como "a" y le realizamos diferentes cast a a para mostrarlo como si fuera un float, un double y un char en un printf. Lo que obtendríamos en pantalla sería lo siguiente: Donde tenemos el valor de nuestro a, a convertido en float y double (mostrándolo con 3 cifras decimales) y a convertido en char. Si vemos este último caso, al hacer la conversión de "a" a char toma a como el código ascii de...

C: Ejemplos: Congruencia de Zeller (nivel básico) ...

La Congruencia de Zeller es un algoritmo que se atribuye al matemático alemán Julius Christian Johannes Zeller que vivió en el siglo XIX. Este algoritmo nos permite determinar el día de la semana que le corresponde a una fecha determinada del calendario Gregoriano. La fórmula que nosotros usaremos (con algunas modificaciones respecto de la original para poder usarla en  informática) es la siguiente: Donde h es el día de la semana (entre 0 y 6), J es año/100 (la centuria) y K es año mod 100 (el año de la centuria). Y hay que tener en cuenta que los meses de enero y febrero cuentan como el mes 13 y 14 del año anterior. Ahora que tenemos la fórmula, programemos el algoritmo en C mediante el uso de una función: Analicemos el código paso a paso: Tenemos en cuenta el caso de enero y febrero: Dijimos que estos meses corresponden a los meses 13 y 14 del año anterior por lo que los asignamos como corresponde (mes + 12 , que dará 13 para enero y 14 para febrero) y le ...

Seguimos con lógica proposicional...

Anteriormente,  comenzamos  a explicar conceptos básicos del tema y analizar conectores lógicos a través de sus tablas de verdad. Entre esos conectores encontramos el condicional o implicación que denotamos de la forma:     p->q , donde p y q son proposiciones. Recordamos también que en  p->q  ,  p  recibe el nombre de "antecedente" y  q  de "consecuente". También se llama a  p  "hipótesis" y a  q  "tesis". Definida esta última, encontramos dos conceptos relacionados a ella: la recíproca y la contrarrecíproca. La  recíproca  de una implicación  p->q  se define como  q->p. Si comparamos la tabla de verdad de una implicación con su recíproca podemos ver que no es lo mismo decir  p->q  que decir  q->p  ya que no son expresiones  equivalentes , concepto que veremos más adelante. Mientras que la contrarrecíproca de una implicación  p->q  se d...